Классификация воздушных винтов. Теория воздушного винта: от первых пропеллеров к эффективным агрегатам будущего

По причине отсутствия разумных альтернатив почти все самолеты первой половины прошлого века оснащались поршневыми двигателями и воздушными винтами. Для повышения технических и летных характеристик техники предлагались новые конструкции винтов, имевшие те или иные особенности. В середине тридцатых годов была предложена совершенно новая конструкция, позволявшая получить желаемые возможности. Ее автором являлся нидерландский конструктор А.Я. Деккер.

Работу в области винтовых систем Адриаан Ян Деккер начал еще в двадцатых годах. Тогда им была разработана новая конструкция крыльчатки для ветряных мельниц. Для повышения основных характеристик изобретатель предложил использовать плоскости, напоминающие крыло самолета. В 1927 году такая крыльчатка была установлена на одной из мельниц в Нидерландах и вскоре прошла испытания. К началу следующего десятилетия в эксплуатацию ввели три десятка таких крыльчаток, а в 1935-м ими оснащалось уже 75 мельниц.

Опытный самолет с воздушным винтом А.Я. Деккера. Фото Oldmachinepress.com

В начале тридцатых годов, после проведения испытаний и внедрения новой конструкции на мельницах, А.Я. Деккер предложил использовать схожие агрегаты в авиации. По его расчетам, крыльчатка особой конструкции могла бы использоваться в качестве воздушного винта самолета. Вскоре эта идея была оформлена в виде необходимой документации. Кроме того, конструктор озаботился получением патента.

Использование нестандартной конструкции воздушного винта, по задумке изобретателя, должно было дать некоторые преимущества перед существующими системами. В частности, появлялась возможность снизить обороты винтов при получении достаточной тяги. В связи с этим изобретение А.Я. Деккера нередко именуют «Воздушным винтом с малой скоростью вращения» – Low rotation speed propeller. Так же эта конструкция именовалась и в патентах.

Первая заявка на получение патента была подана в 1934 году. В конце июля 1936-го А.Я. Деккер получил британский патент за номером 450990, подтверждавший его приоритет в создании оригинального винтового движителя. Незадолго до выдачи первого патента появилась еще одна заявка. Второй патент был выдан в декабре 1937 года. За несколько месяцев до этого нидерландский конструктор отправил документы в патентные бюро Франции и США. Последнее в начале 1940 года выдало документ US 2186064.


Конструкция винта второй версии. Чертеж из патента

Британский патент №450990 описывал необычную конструкцию воздушного винта, способную обеспечит достаточные характеристики при определенном сокращении негативных факторов. Конструктор предложил использовать крупную ступицу винта оживальной формы, плавно переходящую в носовую часть фюзеляжа самолета. На ней должны были жестко крепиться крупные лопасти необычной формы. Именно оригинальные обводы лопастей, как считал А.Я. Деккер, могли привести к желаемому результату.

Лопасти «низкооборотного» воздушного винта должны были иметь малое удлинение при большой длине хорды. Их следовало монтировать под углом к продольной оси ступицы. Лопасть получала аэродинамический профиль с утолщенной носовой честью. Носок лопасти предлагалось делать стреловидным. Законцовка располагалась почти параллельно оси вращения винта, а заднюю кромку предлагалось сделать изогнутой с выступающей концевой частью.


Внутреннее устройство винта и редуктора. Чертеж из патента

Первый проект 1934 года предусматривал использование четырех лопастей. Винт такой конструкции должен был крепиться на валу, отходящем от редуктора с требуемыми характеристиками. Значительная площадь лопастей винта в сочетании с аэродинамическим профилем должны были обеспечить прирост тяги. Таким образом, появлялась возможность получить достаточную тягу при меньших оборотах в сравнении с винтом традиционной конструкции.

Уже после подачи заявки на первый патент А.Я. Деккер провел испытания опытного винта и сделал определенные выводы. В ходе проверки было установлено, что предложенная конструкция имеет определенные минусы. Так, воздушный поток позади винта расходился в стороны, и лишь малая его часть проходила вдоль фюзеляжа. Это приводило к резкому ухудшению эффективности хвостовых рулей. Таким образом, в существующем виде винт Деккера не мог использоваться на практике.

Дальнейшая проработка оригинального воздушного винта привела к появлению обновленной конструкции с рядом важнейших отличий. Именно она стала предметом второго британского и первого американского патента. Интересно, что в документе из США, в отличие от английского, описывался не только винт, но и конструкция его приводов.


Самолет Fokker C.I - подобная машина стала летающей лабораторией для проверки идей А.Я. Деккера. Фото Airwar.ru

Обновленное изделие Low rotation speed propeller должно было иметь в своем составе сразу два соосных воздушных винта противоположного вращения. Передний винт по-прежнему предлагалось строить на основе крупной обтекаемой ступицы. Лопасти заднего винта следовало крепить к цилиндрическому агрегату сопоставимых размеров. Как и в предыдущем проекте, кок переднего винта и кольцо заднего могли выполнять функции носового обтекателя самолета.

Оба винта должны были получать лопасти схожей конструкции, представлявшей собой развитие наработок первого проекта. Вновь следовало использовать значительно изогнутые лопасти малого удлинения, имеющие развитый аэродинамический профиль. Несмотря на стреловидную переднюю кромку, длина профиля увеличивалась по направлению от корня к законцовке, образуя характерный изгиб задней кромки.

Согласно описанию патента, передний винт должен был вращаться против часовой стрелки (при взгляде со стороны пилота), задний – по часовой стрелке. Лопасти винтов следовало монтировать соответствующим образом. Количество лопастей зависело от требуемых характеристик винта. В патенте приводилась конструкция с четырьмя лопастями на каждом винте, тогда как более поздний опытный образец получил большее число плоскостей.


Процесс сборки оригинальных винтов, можно рассмотреть внутренние элементы изделия. Фото Oldmachinepress.com

В американском патенте описывалась конструкция оригинального редуктора, позволявшего передавать крутящий момент с одного двигателя на два винта противоположного вращения. Вал двигателя предлагалось соединять с солнечной шестерней первого (заднего) планетарного контура редуктора. При помощи закрепленного на месте зубчатого венца мощность передавалась на шестерни-сателлиты. Их водило соединялось с валом переднего винта. Этот вал также соединялся с солнечной шестерней второй планетарной передачи. Вращающееся водило ее сателлитов соединялось с полым валом заднего винта. Такая конструкция редуктора позволяла синхронно регулировать скорость вращения винтов, а также обеспечивать их вращение в противоположных направлениях.

По задумке изобретателя, основная тяга должна была создаваться лопастями переднего винта. Задний, в свою очередь, отвечал за правильное перенаправление потоков воздуха и позволял избавиться от негативных эффектов, наблюдавшихся в базовом проекте. После двух соосных винтов поток воздуха проходил вдоль фюзеляжа и должен был нормально обдувать хвостовое оперение с рулями. Для получения таких результатов задний винт мог иметь уменьшенную скорость вращения – около трети оборотов переднего.

Оригинальный винтовой движитель создавался с учетом возможного внедрения в новые проекты авиационной техники, и потому требовалось провести полноценные испытания. В начале 1936 года Адриаан Ян Деккер основал собственную компанию Syndicaat Dekker Octrooien, которой предстояло проверить оригинальный воздушный винт, и – при получении положительных результатов – заняться продвижением этого изобретения в авиационной отрасли.


Готовый винт на самолете. Фото Oldmachinepress.com

В конце марта того же года «Синдикат Деккера» приобрел многоцелевой самолет-биплан Fokker C.I нидерландской постройки. Эта машина с максимальным взлетным весом всего 1255 кг оснащалась бензиновым двигателем BMW IIIa мощностью 185 л.с. Со штатным двухлопастным деревянным винтом она могла развивать скорость до 175 км/ч и подниматься на высоту до 4 км. После определенной перестройки и установки нового воздушного винта биплан должен был стать летающей лабораторией. В апреле 1937 года компания А.Я. Деккера зарегистрировала модернизированный самолет; он получил номер PH-APL.

В ходе перестройки опытный самолет лишился штатного капота и некоторых других деталей. Вместо них в носовой части фюзеляжа поместили оригинальный редуктор и пару «винтов низкой скорости вращения». Передний винт получил шесть лопастей, задний – семь. Основой нового винта стала пара ступиц, собранных из алюминиевого каркаса с обшивкой из того же материала. Лопасти имели схожую конструкцию. В связи с установкой винтов нос машины самым заметным образом изменил свою форму. При этом цилиндрический обтекатель заднего винта не выступал за пределы обшивки фюзеляжа.

Испытания летающей лаборатории с оригинальным винтом стартовали в том же 1937 году. Площадкой для них стал аэродром Ипенберг. Уже на ранних стадиях проверок было установлено, что соосные винты с лопастями малого удлинения действительно могут создавать требуемую тягу. С их помощью машина могла выполнять рулежки и пробежки. Кроме того, с определенного времени испытатели попытались поднять машину в воздух. Известно, что опытный Fokker C.I смог выполнить несколько подлетов, но о полноценном взлете речи не шло.


Вид спереди. Фото Oldmachinepress.com

Испытания опытного самолета позволили выявить как плюсы, так и минусы оригинального проекта. Было установлено, что пара винтов противоположного вращения действительно способна создавать требуемую тягу. При этом винтомоторная группа в сборе отличалась сравнительно малыми размерами. Еще одним преимуществом конструкции был сниженный шум, производимый лопастями малого удлинения.

Впрочем, не обошлось без проблем. Воздушный винт А.Я. Деккера и необходимый ему редуктор отличались от существующих образцов излишней сложностью изготовления и обслуживания. Кроме того, экспериментальный винт, установленный на Fokker C.I, показал недостаточные характеристики тяги. Он позволял самолету двигаться по земле и развивать достаточно высокую скорость, но для полетов его тяга была недостаточна.

По-видимому, испытания продолжались до самого начала сороковых годов, однако за несколько лет так и не привели к реальным результатам. Дальнейшим работам помешала война. В мае 1940 года гитлеровская Германия напала на Нидерланды, и всего через несколько дней опытный самолет с необычными воздушными винтами стал трофеем агрессора. Немецкие специалисты ожидаемо проявили интерес к этой разработке. Вскоре летающую лабораторию отправили на один из аэродромов вблизи Берлина.


Запуск двигателя, винты начали вращение. Кадр из кинохроники

Имеются сведения о проведении некоторых испытаний силами немецких ученых, однако эти проверки достаточно быстро закончились. По некоторым данным, первая же попытка немцев поднять самолет в воздух завершилась аварией. Машину не стали восстанавливать, и на этом смелого проекта закончилась. Единственный самолет, оснащенный винтами типа Low rotation speed propeller, не смог показать себя с лучшей стороны, и потому от оригинальной идеи отказались. В дальнейшем массово использовались только воздушные винты традиционного облика.

Согласно идеям, лежавшим в основе оригинального проекта, особый «Воздушный винт с малой скоростью вращения» должен был стать полноценной альтернативой системам традиционной конструкции. Отличаясь от них некоторой сложностью, он мог иметь преимущества в виде меньших габаритов, сниженных оборотов и сокращенной шумности. Тем не менее, конкурентной борьбы не вышло. Разработка А.Я. Деккера даже не смогла пройти весь цикл испытаний.

Возможно, по мере дальнейшего развития оригинальные воздушные винты смогли бы показать желаемые характеристики и найти применение в тех или иных проектах авиационной техники. Тем не менее, продолжение работ замедлялось в связи с различными проблемами и обстоятельствами, а в мае 1940 года проект был остановлен из-за нападения Германии. После этого необычная идея окончательно осталась без будущего. В дальнейшем в разных странах вновь прорабатывались перспективные конструкции воздушных винтов, но прямые аналоги системы Адриаана Яна Деккера не создавались.

По материалам:
https://oldmachinepress.com/
http://anyskin.tumblr.com/
http://hdekker.info/
http://strangernn.livejournal.com/
https://google.com/patents/US2186064

отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя
N: (η) = PV/N
(Р - , V - поступательная ).
При таких скоростях полёта, когда на лопастях воздушного винта не возникает местных сверхзвуковых течений, основные потери связаны с индуктивным сопротивлением (индуктивные потери) и профильным сопротивлением. Индуктивные потери минимальны, если винт создаёт за собой поле скоростей, совпадающее с описываемой винтом твёрдой винтовой поверхностью. смещающейся с пост, скоростью в направлении своей оси. Такое или близкое к нему поле скоростей обеспечивается соответствующим выбором распределения циркуляции скорости вдоль лопасти (то есть выбором формы лопасти).
При больших дозвуковых скоростях полёта, когда на лопасти образуются области со сверхзвуковым течением, замыкаемые скачками уплотнений, существенным становится (волновые потери). Эффективным способом уменьшения волновых потерь является использование профилей с возможно большими значениями критических Маха чисел и сверхкритических профилей, а также отгиб лопасти назад (саблевидные лопасти) аналогично стреловидному крылу. Отгиб вперёд (обратная стреловидность) здесь эффекта не даёт вследствие роста относительной скорости обтекания с увеличением радиуса и смешения замыкающего скачка уплотнения к задней кромке. С ростом числа Маха полёта (η) воздушных винтов с широкими гонкими саблевидными лопастями (винтовентиляторов) уменьшается значительно меньше, чем (η) винтов с обычными узкими лопастями, хотя индуктивные потери одинаковы.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Коэффициент полезного действия воздушного винта" в других словарях:

    коэффициент полезного действия воздушного винта Энциклопедия «Авиация»

    коэффициент полезного действия воздушного винта - коэффициент полезного действия воздушного винта — отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя N: η = PV/N (P — тяга винта, V — поступательная скорость … Энциклопедия «Авиация»

    коэффициент полезного действия винта - к.п.д. винта Безразмерная величина, характеризуемая отношением эффективной мощности воздушного винта к мощности воздушного винта. [ГОСТ 21664 76] Тематики винты воздушные авиационных двигателей Синонимы к.п.д. винта … Справочник технического переводчика

    воздушный винт Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    воздушный винт - Рис. 1. Схемы воздушных винтов. воздушный винт — лопастной движитель для преобразования крутящего момента двигателя в тягу винта. Устанавливается на самолётах, винтокрылах, аэросанях, аппаратах на воздушной подушке, экранопланах и т. д.В. в … Энциклопедия «Авиация»

    - (пропеллер), лопастный движитель, преобразующий мощность (крутящий момент) двигателя в тягу, необходимую для поступательного движения летательных аппаратов, аэросаней, глиссеров, судов на воздушной подушке. Воздушные винты бывают тянущие –… … Энциклопедия техники

    авиация Энциклопедия «Авиация»

    авиация - Рис. 1. Изменение приведённой «вредной» площади манёвренных истребителей по годам. авиация (франц. aviation, от лат. avis птица) широкое понятие, связанное с полётами в атмосфере аппаратов тяжелее воздуха. А. включает необходимые технические… … Энциклопедия «Авиация»

Это отдельная самостоятельная единица, а точнее целый лопастной агрегат. Он является движителем для аппарата, на котором установлен, то есть превращает мощность двигателя в тягу и, в конечном счете, в движение.

Человек уже давно проявлял внимание к винту. Первые теоретические свидетельства этого имеются еще в рукописях и рисунках Леонардо да Винчи. А практически его впервые применил (для метеорологических приборов) М. В. Ломоносов. вначале устанавливался на дирижаблях, в последствии и по сегодняшнее время на самолетах и при использовании и двигателей. Применяется он также и на наземных аппаратах. Это так называемые суда на воздушной подушке, а также аэросани и глиссеры. То есть история его (как и история всей авиации:-)) длинна и увлекательна и еще, похоже, далеко не закончена.

Что касается теории и принципа действия… Хотел начать рисовать векторные диаграммы, а потом передумал:-). Во-первых не тот сайт, а, во-вторых, все это я уже описал , и даже :-). Скажу лишь, что лопасти воздушного винта имеют аэродинамический профиль, и при его вращении в воздушной среде возникает та же картина, как и при движении крыла.

Аэродинамическая сила (картинка из предыдущей статьи:-))

Все те же , тот же скос потока, только теперь уже подъемная сила становится тягой винта, заставляющей самолет двигаться вперед.

Есть, конечно, и свои особенности. Ведь (точнее его лопасти) по сравнению с совершает более сложное движение: вращательное плюс поступательное движение вперед. И на самом деле теория воздушного винта достаточно сложна. Однако для принципиального понимания вопроса всего сказанного вполне достаточно. Остановлюсь только на некоторых особенностях.Замечу, кстати, что винты бывают не только тянущие, но и толкающие (такие, между прочим, стояли на самолете братьев Райт).

Пропеллер немецкого дирижабля SL1 (1911) диаметром 4,4 м.

Воздушный винт для траспортного самолета А400М.

Транспортный самолет А400М.

При вращении воздушного винта и одновременном его движении вперед, каждая его точка как бы движется по спирали, а сам винт как бы «ввинчивается в воздух», почти, как винт в гайку или шуруп в дерево. Аналогия очень даже существенная:-). Похоже на резьбу пары «болт –гайка». Каждая резьба имеет такой параметр, как шаг. Чем шаг больше, тем резьба как бы более растянута, и болт в гайку ввинчивается быстрее. Понятие шага существует и для воздушного винта. По сути дела это такое воображаемое расстояние, на которое передвинется вращающийся в воздухе винт при его повороте на один оборот. Для того, чтобы он «ввинчивался» быстрее, нужно, чтобы сила, его тянущая (тяга винта, тот самый аналог подъемной силы), была больше. Или же все, соответственно, наоборот. А этого можно достичь за счет изменения величины аналога угла атаки, который называется углом установки лопасти винта, или попросту шагом винта . Понятие шага винта существует для всех видов воздушных винтов, для самолетов и для вертолетов, и принцип их действия вобщем-то одинаков.

Транспортник Кролевских ВВС Hercules C-4 на стоянке с винтами во флюгерном режиме.

Первые воздушные винты, стоявшие на аэропланах, имели фиксированный шаг. Но дело в том, что любой винт имеет такой параметр, как коэффициент полезного действия, который оценивает эффективность его работы. А она может меняться в зависимости от изменения скорости полета, мощности двигателя, да и лобовое сопротивление винта на это влияет. Вот для того, чтобы сохранить кпд на достаточной высоте была придумана (еще в 30-х года 20 в.) система изменения шага и появились винты изменяемого в полете шага (ВИШ ). Теперь, в зависимости от задаваемого летчиком режима полета, шаг винта может меняться. Кроме того обычно существуют еще два специальных режима. Реверсивный – для создания при торможении самолета на земле и флюгерный , который используется при выключении (чаще аварийном) двигателя в полете. Тогда лопасти выставляются «по потоку», чтобы не создавать лишнего сопротивления полету.

Диаметр винта и его шаг – это основные технические параметры воздушного винта. Существует еще такое понятие, как крутка. То есть каждая лопасть по всей длинне слегка закручена. Это делается опять же для того, чтобы при одной и той же мощности лопасть создавала наибольшую тягу.

Американский экспериментальный самолет Bell X-22 с импеллерами 1966 г.

Французский экспериментальный самолет с импеллерами NORD 500 CADET. 1967 г.

1932 г. Италия. Экспериментальный самолет с импеллером "Летающая бочка"

Современные винты вообще достаточно разнообразны по своей конструкции. Количество лопастей может меняться (в среднем от 2 до 8). может быть как тянущим, так и толкающим. Винт по- другому еще называется пропеллер . Это устаревшее название и происходит от латинского prōpellere, что значить гнать, толкать вперед. Однако сейчас еще одно слово вошло в употребеление. Это слово импеллер . Оно означает «крыльчатка» и обозвали им определенный тип воздушного винта, заключенного в кольцевую оболочку. Это позволяет повысить эффетивность его работы, снизить потери и увеличить безопасность. Однако такого рода летательные аппараты находятся только лишь в стадии экспериментальной разработки.

Основной скоростной диапазон применения винтов ограничен скоростями 700-750 км/ч. Но даже это достаточно большая скорость и для обеспечения устойчивой и эффективной работы во всем диапазоне применяются различные технические ухищрения. В частности разрабатываются многолопастные винты с саблевидными лопастями, ведется работа над сверхзвуковыми винтами, применяются вышеуказанные импеллеры. Кроме того уже достаточно давно применяются так называемые соосные винты, когда на одной оси вращаются два воздушных винта в различных направлениях. Примером самолета с такими винтами может быть самый быстрый самолет с турбовинтовыми двигателями российский стратегический бомбардировщик ТУ-95 . Его скорость (макс.) 920 км/ч.

Стратегический бомбардировщик ТУ-95.

К сожалению, , особенно в сочетании с , имеет все-таки ограниченную область применения. Конечно, там, где так необходимы ближнемагистральные самолеты и так называемая он себя еще покажет. Но тем не менее соревнование высота-скорость-дальность он вместе со своим спутником поршнеым мотором уже проиграл . Но об этом в другой статье…

Фотографии кликабельны.

Воздушный винт в кольце

Самодеятельные конструкторы аэросаней, аэроглиссеров, самолетов и других транспортных средств, использующих воздушные винты, часто решают дилемму получения приемлемой тяги при малых габаритах винтомоторной установки. Одним из способов повышения тяги без увеличения диаметра винта является увеличение количества лопастей. Так увеличение количества лопастей с 2-х до 4-х приводит к увеличению тяги винта на 70-80%. Но в данном случае уменьшается КПД винта, поэтому требуется двигатель с в два раза большей мощностью. Одним из способов увеличения статической тяги винта без повышения мощности двигателя является применение кольцевой насадки. При этом статическая тяга увеличивается в 1,2 раза, что равносильно увеличению диаметра винта на 30%.

Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создается зона пониженного давления, за винтом - повышенного. Вращение лопастей воздушного винта приводит к тому, что отбрасываемые им массы воздуха приобретают окружные и радиальные направления и на это расходуется часть энергии подводимой к винту.

Комплекс воздушный винт - направляющая насадка обладает рядом специфических преимуществ, связанных с действием насадки:

    1. Возникающая вокруг профиля насадки циркуляция набегающего потока разгружает винт, перекладывая часть упора комплекса на насадку.

    2. При работе комплекса в косом потоке насадка формирует поле скоростей перед винтом, выравнивая его практически соосно винту, сохраняя величину скорости натекания. В результате скос натекающего потока мало влияет на винт.

    3. Разница давлений на нагнетающей и засасывающей сторонах лопастей винта без насадки, обуславливающая полезное действие винта, уменьшается вследствие перетекания у концов лопастей (как на крыле самолета). Наличие насадки препятствует такому перетеканию, практически исключает концевые потери и повышает, таким образом, КПД комплекса.

В целом КПД комплекса может на 20 % превысить КПД винта без насадки.

Насадка представляет собой кольцо охватывающее гребной винт. Сечению насадки вдоль оси винта придается крыльевой профиль, обращенный выпуклой поверхностью к винту (рис.1).

Благодаря скосу потока воздуха профиль насадки обтекается под некоторым углом атаки. В результате возникают подъемная сила Cy и сила тяги P . Эффективность насадки существенно зависит от режима работы пропульсивного комплекса. Так, при разбеге, когда винт создает большой упор при низкой скорости самолета, скос потока на входе насадки достаточно велик, что приводит к разгрузке лопастей. Профильное сопротивление насадки при низкой скорости невелико. Однако на высоких скоростях скос потока уменьшается, а профильное сопротивление резко возрастает. Эффективность насадки падает.

Зазор между концом лопасти винта и насадкой составляет 1-2% радиуса винта. При большем зазоре КПД комплекса приблизительно соответствует КПД винта без насадки. При меньшем зазоре сложно обеспечить беспрепятственное вращение винта из-за вибраций и температурных деформаций частей комплекса.

Насадка создает более равномерную нагрузку на двигатель. Уменьшая вредное воздействие косого потока на винт насадка снижает переменные нагрузки на лопасти и вал винта, служит своеобразным демпфером при боковых порывах ветра. Насадка служит также защитой винта от повреждений и делает более безопасной эксплуатацию судна.

Расчет насадки достаточно сложен. Так же как и расчет воздушного винта, он часто не дает на практике расчетных результатов. Поэтому насадку проще подбирать экспериментально.

Ниже даны параметры четырехлопастного движительного комплекса «винт в кольце» в сравнении с двух и четырех лопастными винтами без насадок.

F (кольцо)