Понятие производственной системы и производственного процесса. Технологический процесс и технологическое множество

Способы описания технологий.

Производство - основная область деятельности фир­мы. Фирмы используют производственные факторы, кото­рые называются также вводимыми (входными) факторами производства. Например, владелец пекарни использует та­кие вводимые факторы производства, как труд рабочих, сырье в виде муки и сахара, а также капитал, вложенный в печи, мешалки и другое оборудование для производства такой продукции, как хлеб, пирожки и кондитерские изде­лия.

Мы можем подразделить производственные факторы на крупные категории - труд, материалы и капитал, каждая из которых включает более узкие группировки. Например, труд как производственный фактор через показатель тру­доемкости объединяет как квалифицированный (плотни­ков, инженеров), так и неквалифицированный труд (сель­скохозяйственных рабочих), а также предприниматель­ские усилия руководителей фирмы. К материалам отно­сятся сталь, пластиковые материалы, электричество, вода и любое другое изделие, которое приобретает фирма и превращает в готовый товар. К капиталу относятся здания, оборудование и товарно-материальные ценности.

Множество всех технологически доступных для данной фирмы векторов чистых выпусков называют производственным множеством и обозначают через Y .

ПРОИЗВОДСТВЕННОЕ МНОЖЕСТВО - множество допустимых технологических способов данной экономической системы (X,Y ) , где X - совокупность векторов затрат , а Y - совокупность векторов выпуска .

П. м. характеризуется следующими особенностями: оно замкнуто и выпукло (см. Множество ), векторы затрат обязательно ненулевые (нельзя что-то производить, ничего не затрачивая), компоненты П. м. - затраты и выпуски - нельзя менять местами, ибо производство - необратимый процесс. Выпуклость П. м. показывает, в частности, тот факт, что отдача от перерабатываемых ресурсов при увеличении объема переработки сокращается.

Cвойства производственных множеств

Рассмотрим экономику с l благами. Для конкретной фирмы естественно рассматривать часть из этих товаров как факторы производства и часть - как выпускаемую продукцию. Следует оговориться, что такое деление довольно условно, так как фирма обладает достаточной свободой в выборе ассортимента производимой продукции и структуры затрат. При описании технологии будем различить выпуск и затраты, представляя последние как выпуск со знаком минус. Для удобства представления технологии продукцию, которая и не затрачивается и не выпускается фирмой, будем относить к ее выпуску, причем объем производства этой продукции считаем равным 0. В принципе не исключена ситуация, в которой продукт, производимый фирмой, также потребляется ею в процессе производства. В этом случае мы будем рассматривать только чистый выпуск данного продукта, т. е. его выпуск минус затраты.



Пусть число факторов производства равно n, а число видов выпускаемой продукции равно m, так что l = m + n. Обозначим вектор затрат (по абсолютной величине) через r 2 Rn+, а объемы выпусков через y 2 Rm+

Вектор (−r, yo) будем называть вектором чистых выпусков. Совокупность всех технологически допустимых векторов чистых выпусков y = (−r, yo) составляет технологическое множество Y . Таким образом, в рассматриваемом случае любое технологическое множество - это подмножество Rn − × Rm+

Такое описание производства носит общий характер. При этом можно не придерживаться жесткого деления благ на продукты и факторы производства: одно и то же благо может при одной технологии затрачиваться, а при другой - производится.

Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.

1. Непустота. Технологическое множество Y непусто. Это свойство означает принципиальную возможность осуществления производственной деятельности.

2. Замкнутость. Технологическое множество Y замкнуто. Это свойство скорее техническое; оно означает, что технологическое множество содержит свою границу, и предел любой последовательности технологически допустимых векторов чистого выпуска также является технологически допустимым вектором чистых выпусков.

3. Свобода расходования. Это свойство можно интерпретировать как наличие возможности производить тот же самый объем выпуска, но посредством больших затрат, или меньший выпуск при тех же затратах.

4. Отсутствие «рога изобилия» (“no free lunch”). если y 2 Y и y > 0, то y = 0. Это свойство означает, что для производства продукции в положительном количестве необходимы затраты в ненулевом объеме.

< _ < 1, тогда y0 2 Y. Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба: если y 2 Y и y0 = _y, где _ > 1, тогда y0 2 Y.

В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е. если y 2 Y и y0 = _y0, тогда y0 2 Y 8_ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0). В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

5. Невозрастающая отдача от масштаба: если y 2 Y и y0 = _y, где 0 < _ < 1, тогда y0 2 Y. Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба: если y 2 Y и y0 = _y, где _ > 1, тогда y0 2 Y. В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е. если y 2 Y и y0 = _y0, тогда y0 2 Y 8_ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0).

В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

6. Выпуклость: Свойство выпуклости означает возможность «смешивать» технологии в любой пропорции.

7. Необратимость

Пусть из килограмма стали можно произвести 5 подшипников. Необратимость означает, что невозможно произвести из 5-ти подшипников килограмм стали.

8. Аддитивность. если y 2 Y и y0 2 Y , то y + y0 2 Y. Свойство аддитивности означает возможность комбинировать технологии.

9. Допустимость бездеятельности:

Теорема 44:

1) Из невозрастающей отдачи от масштаба и аддитивности технологического множества следует его выпуклость.

2) Из выпуклости технологического множества и допустимости бездеятельности следует невозрастающая отдача от масштаба. (Обратное не всегда верно: при невозрастающей отдаче технология может быть невыпуклой)

3) Технологическое множество обладает свойствами аддитивности и невозрастающей отдачи от масштаба тогда и только тогда, когда оно - выпуклый конус.

Не все допустимые технологии в равной степени важны с экономической точки зрения.

Среди допустимых особо выделяются эффективные технологии. Допустимую технологию y принято называть эффективной, если не существует другой (отличной от нее) допустимой технологии y0 , такой что y0 > y. Очевидно, что такое определение эффективности неявно подразумевает, что все блага являются в определенном смысле желательными. Эффективные технологии составляют эффективную границу технологического множества. При определенных условиях оказывается возможным использовать в анализе эффективную границу вместо всего технологического множества. При этом важно, чтобы для любой допустимой технологии y нашлась эффективная технология y0 , такая что y0 > y. Для того, чтобы это условие было выполнено, требуется, чтобы технологическое множество было замкнутым, и чтобы в пределах технологического множества невозможно было увеличивать до бесконечности выпуск одногоблага, не уменьшая при этом выпуск других благ.

ТЕХНОЛОГИЧЕСКИЙ СПОСОБ - общее понятие, объединяющее два: Т. с. производства (производственный способ, технология ) и Т. с. потребления; совокупность основных характеристик (ингредиентов ) процесса производства (соответственно - потребления ) того или иного продукта . В экономико-математической модели Т. с., или технология (activity), описывается системой присущих ему чисел (вектором ): напр., нормами затрат и выпуска различных ресурсов в единицу времени или в расчете на единицу продукции и т. п., в т. ч. коэффициентами материалоемкости , трудоемкости , фондоемкости , капиталоемкости .

Напр., если x = (x 1 , ..., x m ) - вектор затрат ресурсов (перечисленных под номерами i = 1, 2, ..., m ), а y = (y 1 , ..., y n ) - вектор объемов производства продуктов j= 1, 2, ..., n , то технологиями, технологическими процессами, способами производства можно назвать пары векторов (x,y ). Технологическая допустимость означает здесь возможность получить из затрачиваемых (используемых) ингредиентов вектора x вектор продукции y .

Совокупность всевозможных допустимых технологий (XY ) образует технологическое или производственное множество данной экономической системы .

ВЕКТОР - упорядоченный набор из некоторого количества действительных чисел (таково одно из многих определений - то, которое принято в экономико-математических методах ). Напр., суточный план цеха может быть записан 4-мерным вектором (5, 3, -8, 4), где 5 означает 5 тыс. деталей одного вида, 3 - 3 тыс. деталей второго вида, (-8) - расход металла в т, а последняя компонента, допустим, экономию 4 тыс. кВт. ч электроэнергии. Как видно, число компонент (координат ) В. произвольно (в данном случае план цеха может состоять не из четырех, а из любого другого числа показателей); их недопустимо менять местами; они могут быть как положительными, так и отрицательными.

Векторы можно умножать на действительное число (напр., если увеличить план в 1,2 раза по всем показателям, то получится новый В. с тем же числом компонент). Векторы, содержащие равное число соответственно одноименных аддитивных компонент, можно складывать и вычитать.

Буквенное обозначение В. принято выделять жирным шрифтом (хотя не всегда это соблюдается).

Суммой векторов x = (x 1 ,..., x n) и y = (y 1 , ..., y n ) является также В. (x + y ) = (x 1 + y 1 , ..., x n +y n ).

Скалярным произведением векторов x и y называется число, равное сумме произведений соответствующих компонент этих В.:

Векторы x и y называются ортогональными , если их скалярное произведение равно нулю.

Равенство В. - компонентное, т. е. два В. равны, если равны их соответствующие компоненты.

Вектор 0 - (0, ..., 0) нулевой ;

n -мерный В. - положительный (x > 0), если все его компоненты x i больше нуля, неотрицательный (x ≥ 0), если все его компоненты x i больше 0 или равны нулю, т. е. x i ≤ 0; и полуположительный , если при этом хотя бы одна компонента x i ≥ 0 (обозначение x ≥ 0); если В. имеют равное количество компонент, возможно их упорядочение (полное или частичное), т. е. введение на множестве векторов бинарного отношения > ”: x > y , x y , x y в зависимости от того, положительна, полуположительна или неотрицательна разность x – y.

ЗАКОН УБЫВАЮЩЕЙ ОТДАЧИ -утверждение о том, что если расширяется использование какого-либо одного фактора производства и сохраняются при этом затраты всех остальных факторов (они называются фиксированными ), то физический объем предельного продукта , производимого с помощью указанного фактора, станет (по крайней мере, с определенного этапа) убывать.

ПРОИЗВОДСТВЕННЫЙ ЛУЧ - геометрическое место точек, отображающих пропорциональное увеличение количества ресурсов при использовании определенного технологического способа с возрастающей интенсивностью .

Напр., если сочетание 3 ед. капитала (фондов) и 2 ед. труда (т. е. комбинация 3K + 2L ) дает 10 ед. некоторого продукта, то сочетания 6K + 4L , 9K + 6L , дающие соответственно 20 и 30 ед. и т. д., будут лежать на графике на прямой, называемой П. л. или технологическим лучом. При ином сочетании факторов П. л. будет иметь другой наклон. В силу неделимости многих факторов производства количество технологических способов и соответственно П. л. принимается конечным.

Напр., если в угольной лаве работает бригада из трех шахтеров и к ним добавить еще одного, выработка возрастет на четверть, а если добавить пятого, шестого, седьмого, прирост выработки станет уменьшаться, а затем и прекратится совсем: шахтеры в тесноте будут просто мешать друг другу.

Ключевое понятие здесь - предельная производительность труда (более широко - предельная производительность фактора производства δ Y x ). Напр., если рассматриваются два фактора, то при росте затрат одного из них (первого или второго) его предельная производительность падает.

Закон применим на краткосрочном отрезке времени и для данной технологии (ее пересмотр меняет ситуацию).

Рассмотрим экономику с l благами. Для конкретной фирмы естественно рассматривать часть из этих товаров как факторы производства и часть - как выпускаемую продукцию. Следует оговориться, что такое деление довольно условно, так как фирма обладает достаточной свободой в выборе ассортимента производимой продукции и структуры затрат. При описании технологии будем различить выпуск и затраты, представляя последние как выпуск со знаком минус. Для удобства представления технологии продукцию, которая и не затрачивается и не выпускается фирмой, будем относить к ее выпуску, причем объем производства этой продукции считаем равным 0. В принципе не исключена ситуация, в которой продукт, производимый фирмой, также потребляется ею в процессе производства. В этом случае мы будем рассматривать только чистый выпуск данного продукта, т. е. его выпуск минус затраты.

Пусть число факторов производства равно n, а число видов выпускаемой продукции равно m, так что l = m + n. Обозначим вектор затрат (по абсолютной величине) через r Rn + , а объемы выпусков через y Rm + . Вектор (−r, yo ) будем называть вектором чистых выпусков . Совокупность всех технологически допустимых векторов чистых выпусков y = (−r, yo ) составляет технологическое множество Y . Таким образом, в рассматриваемом случае любое технологическое множество - это подмножество Rn − × Rm + .

Такое описание производства носит общий характер. При этом можно не придерживаться жесткого деления благ на продукты и факторы производства: одно и то же благо может при одной технологии затрачиваться, а при другой - производится. В этом случае Y Rl .

Опишем свойства технологических множеств, в терминах которых обычно дается описание конкретных классов технологий.

1. Непустота

Технологическое множество Y непусто.

Это свойство означает принципиальную возможность осуществления производственной деятельности.

2. Замкнутость

Технологическое множество Y замкнуто.

Это свойство скорее техническое; оно означает, что технологическое множество содержит свою границу, и предел любой последовательности технологически допустимых векторов чистого выпуска также является технологически допустимым вектором чистых выпусков.

3. Свобода расходования:

если y Y и y0 6 y, то y0 Y.

Это свойство можно интерпретировать как наличие возможности производить тот же самый объем выпуска, но посредством больших затрат, или меньший выпуск при тех же затратах.

4. Отсутствие «рога изобилия» (“no free lunch”)

если y Y и y > 0, то y = 0.

Это свойство означает, что для производства продукции в положительном количестве необходимы затраты в ненулевом объеме.

Рис. 4.1. Технологическое множество с возрастающей отдачей от масштаба.

5. Невозрастающая отдача от масштаба:

если y Y и y0 = λy, где 0 < λ < 1, тогда y0 Y.

Иногда это свойство называют (не совсем точно) убывающей отдачей от масштаба. В случае двух благ, когда одно затрачивается, а другое производится, убывающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не возрастает. Если за час вы можете решить в лучшем случае 5 однотипных задач по микроэкономике, то за два часа в условиях убывающей отдачи вы не смогли бы решить более 10 таких задач.

50 . Неубывающая отдача от масштаба:

если y Y и y0 = λy, где λ > 1, тогда y0 Y.

В случае двух товаров, когда один затрачивается, а другой производится, возрастающая отдача означает, что (максимально возможная) средняя производительность затрачиваемого фактора не убывает.

500 . Постоянная отдача от масштаба - ситуация, когда технологической множества удовлетворяет условиям 5 и 50 одновременно, т. е.

если y Y и y0 = λy0 , тогда y0 Y λ > 0.

Геометрически постоянная отдача от масштаба означает, что Y является конусом (возможно, не содержащим 0).

В случае двух товаров, когда один затрачивается, а другой производится, постоянная отдача означает, что средняя производительность затрачиваемого фактора не меняется при изменении объема производства.

Рис. 4.2. Выпуклое технологическое множество с убывающей отдачей от масштаба

Свойство выпуклости означает возможность «смешивать» технологии в любой пропорции.

7. Необратимость

если y Y и y 6= 0, то (−y) / Y.

Пусть из килограмма стали можно произвести 5 подшипников. Необратимость означает, что невозможно произвести из 5-ти подшипников килограмм стали.

8. Аддитивность.

если y Y и y0 Y , то y + y0 Y.

Свойство аддитивности означает возможность комбинировать технологии.

9. Допустимость бездеятельности:

Теорема 44:

1) Из невозрастающей отдачи от масштаба и аддитивности технологического множества следует его выпуклость.

2) Из выпуклости технологического множества и допустимости бездеятельности следует невозрастающая отдача от масштаба. (Обратное не всегда верно: при невозрастающей отдаче технология может быть невыпуклой, см. Рис. 4.3 .)

3) Технологическое множество обладает свойствами аддитивности и невозрастающей

отдачи от масштаба тогда и только тогда, когда оно - выпуклый конус.

Рис. 4.3. Невыпуклое технологическое множество с невозрастающей отдачей от масштаба.

Не все допустимые технологии в равной степени важны с экономической точки зрения. Среди допустимых особо выделяются эффективные технологии . Допустимую технологию y принято называть эффективной, если не существует другой (отличной от нее) допустимой технологии y0 , такой что y0 > y. Очевидно, что такое определение эффективности неявно подразумевает, что все блага являются в определенном смысле желательными. Эффективные технологии составляют эффективную границу технологического множества. При определенных условиях оказывается возможным использовать в анализе эффективную границу вместо всего технологического множества. При этом важно, чтобы для любой допустимой технологии y нашлась эффективная технология y0 , такая что y0 > y. Для того, чтобы это условие было выполнено, требуется, чтобы технологическое множество было замкнутым, и чтобы в пределах технологического множества невозможно было увеличивать до бесконечности выпуск одного блага, не уменьшая при этом выпуск других благ. Можно показать, что если технологическое

Рис. 4.4. Эффективная граница технологического множества

множество обладает свойством свободы расходования, то эффективная граница однозначно задает соответствующее технологическое множество.

Начальные курсы и курсы промежуточной сложности, при описании поведения производителя, опираются на представление его производственного множества посредством производственной функции. Уместен вопрос, при каких условиях на производственное множество такое представление возможно. Хотя можно дать более широкое определение производственной функции, однако здесь и далее мы будем говорить только об «однопродуктовых» технологиях, т. е. m = 1.

Пусть R - проекция технологического множества Y на пространство векторов затрат, т. е.

R = { r Rn | yo R: (−r, yo ) Y } .

Определение 37:

Функция f(·) : R 7→R называется производственной функцией , представляющей технологию Y , если при каждом r R величина f(r) является значением следующей задачи:

yo → max

(−r, yo ) Y.

Заметим, что любая точка эффективной границы технологического множества имеет вид (−r, f(r)). Обратное верно, если f(r) является возрастающей функцией. В этом случае yo = f(r) является уравнением эффективной границы.

Следующая теорема дает условия, при которых технологическое множество может быть представлено??? производственной функцией.

Теорема 45:

Пусть для технологического множества Y R × (−R) для любого r R множество

F (r) = { yo | (−r, yo ) Y }

замкнуто и ограничено сверху. Тогда Y может быть представлено производственной функцией.

Замечание: Выполнение условий данного утверждения можно гарантировать, например, если множество Y замкнуто и обладает свойствами невозрастающей отдачи от масштаба и отсутствия рога изобилия.

Теорема 46:

Пусть множество Y замкнуто и обладает свойствами невозрастающей отдачи от масштаба и отсутствия рога изобилия. Тогда для любого r R множество

F (r) = { yo | (−r, yo ) Y }

замкнуто и ограничено сверху.

Доказательство: Замкнутость множеств F (r) непосредственно следует из замкнутости Y . Покажем, что F (r) ограничены сверху. Пусть это не так и при некотором r R суще-

ствует неограниченно возрастающая последовательность {yn }, такая что yn F (r). Тогда вследствие невозрастающей отдачи от масштаба (−r/yn , 1) Y . Поэтому (вследствие замкнутости), (0, 1) Y , что противоречит отсутствию рога изобилия.

Отметим также, что если технологическое множество Y удовлетворяет гипотезе свободного расходования, и существует представляющая его производственная функция f(·), то множество Y описывается следующим соотношением:

Y = { (−r, yo ) | yo 6 f(r), r R } .

Установим теперь некоторые взаимосвязи между свойствами технологического множества и представляющей его производственной функции.

Теорема 47:

Пусть технологическое множество Y таково, что для всех r R определена производственная функция f(·). Тогда верно следующее.

1) Если множество Y выпукло, то функция f(·) вогнута.

2) Если множество Y удовлетворяет гипотезе свободного расходования, то верно и обратное, т. е. если функция f(·) вогнута, то множество Y выпукло.

3) Если Y выпукло, то f(·) непрерывна на внутренности множества R.

4) Если множество Y обладает свойством свободы расходования, то функция f(·) не убывает.

5) Если Y обладает свойством отсутствия рога изобилия, то f(0) 6 0.

6) Если множество Y обладает свойством допустимости бездеятельности, то f(0) > 0.

Доказательство: (1) Пусть r0 , r00 R. Тогда (−r0 , f(r0 )) Y и (−r00 , f(r00 )) Y , и

(−αr0 − (1 − α)r00 , αf(r0 ) + (1 − α)f(r00 )) Y α ,

поскольку множество Y выпукло. Тогда по определению производственной функции

αf(r0 ) + (1 − α)f(r00 ) 6 f(αr0 + (1 − α)r00 ),

что означает вогнутость f(·).

(2) Поскольку множество Y обладает свойством свободного расходования, то множество Y (с точностью до знака вектора затрат) совпадает с ее подграфиком. А подграфик вогнутой функции - выпуклое множество.

(3) Доказываемый факт следует из того, что вогнутая функция непрерывна во внутренно-

сти ее области определения.

(4) Пусть r 00 > r0 (r0 , r00 R). Поскольку (−r0 , f(r0 )) Y , то по свойству свободы расходования (−r00 , f(r0 )) Y . Отсюда, по определению производственной функции, f(r00 ) > f(r0 ), то есть f(·) не убывает.

(5) Неравенство f(0) > 0 противоречит предположению об отсутствии рога изобилия. Значит, f(0) 6 0.

(6) По предположению о допустимости бездеятельности (0, 0) Y . Значит, по определению

В предположении о существовании производственной функции свойства технологии можно описывать непосредственно в терминах этой функции. Покажем это на примере так называемой эластичности масштаба.

Пусть производственная функция дифференцируема. В точке r, где f(r) > 0, определим

локальную эластичность масштаба e(r) как:

Если в некоторой точке e(r) равна 1, то считают, что в этой точке постоянная отдача от масштаба , если больше 1 - то возрастающая отдача , меньше - убывающая отдача от масштаба . Вышеприведенное определение можно переписать в следующем виде:

P ∂f(r) e(r) = i ∂r i r i .

Теорема 48:

Пусть технологическое множество Y описывается производственной функцией f(·) и

в точке r выполнено e(r) > 0. Тогда верно следующее:

1) Если технологическое множество Y обладает свойством убывающей отдачи от масштаба, то e(r) 6 1.

2) Если технологическое множество Y обладает свойством возрастающей отдачи от масштаба, то e(r) > 1.

3) Если Y обладает свойством постоянной отдачи от масштаба, то e(r) = 1.

Доказательство: (1) Рассмотрим последовательность {λn } (0 < λn < 1), такую что λn → 1. Тогда (−λn r, λn f(r)) Y , откуда следует, что f(λn r) > λn f(r). Перепишем это неравенство в виде:

f(λn r) − f(r)

Переходя к пределу, имеем

λn − 1

∂ri

ri 6 f(r).

Таким образом, e(r) 6 1.

Свойства (2) и (3) доказываются аналогично.

Технологические множества Y можно задавать в виде неявных производственных функций g(·). По определению, функция g(·) называется неявной производственной функцией, если технология y принадлежит технологическому множеству Y тогда и только тогда, когда g(y) >

Заметим, что такую функцию можно найти всегда. Например, подходит функция такая, что g(y) = 1 при y Y и g(y) = −1 при y / Y . Заметим, однако, что данная функция не является дифференцируемой. Вообще говоря, не каждое технологическое множество можно описать одной дифференцируемой неявной производственной функцией, причем такие технологические множества не являются чем-то исключительным. В частности, технологические множества, рассматриваемые в начальных курсах микроэкономики, часто бывают такими, что для их описания нужно два (или больше) неравенства с дифференцируемыми функциями, поскольку требуется учитывать дополнительные ограничения неотрицательности факторов производства. Чтобы учитывать такие ограничения, можно использовать векторные неявные

С помощью технологических множеств моделируются производственные процессы, которые осуществляются производственной системой. У каждой системы есть входы и выходы:

Производственный процесс представляется как процесс однозначного преобразования факторов производства в продукты производства в течение заданного интервала времени. За этот интервал времени происходит полное исчезновение факторов и появление продуктов.

При таком моделировании – преобразование факторов в продукты – полностью скрыта роль внутренней структуры производственной системы, ее организации и методов управления производства.

Наблюдателям доступна информация о состоянии входов и выходов системы. Эти состояния определяются, с одной стороны, точкой в пространстве товаров и факторов, а с другой, состояние выходов определяется точкой в пространстве выходов.

Модели пространства включают в себя множество факторов пространства, множество параметров пространства и множество доступных технологий.

Технология – это технический способ преобразования факторов производства в продукты.

Технологическим процессом называют упорядоченный набор двух векторов , где – вектор факторов производства, – вектор продуктов. Технологический процесс является простейшей моделью пространства, которая задается от ряда элементов:

Таким образом, технологический процесс описывается набором из (n+ m) чисел: .

Например, возьмем компьютер типа А и , т.е выпускается один компьютер, тогда этот технологический процесс описывается 7+1=8 числами.

В практике моделирования реальных производственных систем в качестве первого приближения используется гипотеза линейных технологий.

Линейность технологий предполагает увеличение продуктов V при возрастании наборов факторов U .

Рассмотрим основные свойства технологических процессов:

1. Подобие.

Технологический процесс подобен , т.е. ~ , если выполняется условие: , которое означает, что - это тот же технологический процесс, но протекающий с интенсивностью :

Для подобных процессов выполняется система равенств:

Подобные процессы лежат на одном луче технологии производства.

2. Различие.

Различные технологические процессы лежат на различных лучах и не могут быть преобразованы друг в друга с помощью умножения на положительное число.

3. Составные технологические процессы.

Процесс называется составным, если существуют и , что .

Процесс, который не является составным, называют базовым.

Луч, проходящий через начало координат в направлении базового процесса, называют базовым лучом. Каждому базовому лучу соответствует базовая технология, а все точки базового луча отражают подобные технологические процессы.

По определению базовый технологический процесс не может быть выражен через линейную комбинацию других технологических процессов.

В положительном октанте можно разместить гиперплоскость, отсекающую единичные отрезки от каждой координаты.

Это позволяет наглядно представить технологии производства.

Покажем возможные пересечения гиперплоскости технологическими лучами.

1) Единственная доступная технология – базовая.

2) Появление новой дополнительной базовой технологии.

3) Линейная комбинация двух базовых технологий.

4) Третья дополнительная базовая технология.

5) Возможность формирования технологий, лежащих внутри треугольной области.

6) Две треугольные области с шестью базовыми технологиями.

7) Объединение технологий – выпуклый шестиугольник.

8) Возможен случай с бесконечным числом базовых технологий.

В этих графических образах все внутренние и граничные точки, за исключением вершин, отражают составные технологические процессы, а множество всех технологических процессов называется технологическим множеством Z .

Технологические множества обладают следующими свойствами:

1. Не осуществление рога изобилия.

(Ø, V) Z , следовательно, V= Ø .

(Ø, Ø) Z означает бездействие.

2. Технологическое множество выпукло, а процессы, лучи которых лежат на границе этого множества, могут смешиваться друг с другом.

3. Технологическое множество ограничено сверху в силу ограниченности экономических ресурсов.

4. Технологическое множество замкнуто, и эффективные технологии лежат на границе этого множества.

Специфическим свойством технологических множеств является существование неэффективных процессов.

Если существует , то возможны любые технологические процессы, удовлетворяющие условию (для факторов), (для продуктов).

Существует ( ,Ø) Z , что означает полное уничтожение факторов производства. В нем вообще не возникают продукты.

Технологический процесс более эффективен, чем , если и/или .

ПРОИЗВОДСТВЕННАЯ ФУНКЦИЯ.

Математическое описание эффективного процесса может быть преобразовано в производственную функцию путем агрегирования факторов производства, а также агрегирования продуктов производства в единственный продукт.

2. Производственные множества и производственные функции

2.1. Производственные множества и их свойства

Рассмотрим важнейшего участника экономических процессов – отдельного производителя. Производитель реализует свои цели только через потребителя и поэтому должен угадать, понять, что тот хочет, и удовлетворить его потребности. Будем считать, что имеется n различных товаров, количество n-го товара обозначается х n , тогда некоторый набор товаров обозначается Х = (x 1 , …, x n). Будем рассматривать только неотрицательные количества товаров, так что х i  0 для любого i = 1, ..., n или Х > 0. Множество всех наборов товаров называется пространством товаров С. Набор товаров можно трактовать как корзину, в которой лежат эти товары в соответствующем количестве.

Пусть экономика работает в пространстве товаров С = {X = (x 1 , x 2 , …, x n): x 1 , …, x n  0}. Пространство товаров состоит из неотрицательных n-мерных векторов. Рассмотрим теперь вектор T размерности n, первые m компонентов которого неположительные: x 1 , …, x m  0, а последние (n-m) компонентов неотрицательны: x m +1 , …, x n  0. Вектор X = (x 1 ,…, x m) назовем вектором затрат , а вектор Y = (x m+1 , …, x n) – вектором выпуска . Сам же вектор T = (X,Y) назовем вектором затрат-выпуска, или технологией .

По своему смыслу технология (X,Y) есть способ переработки ресурсов в готовую продукцию: «смешав» ресурсы в количестве X, получим продукцию в размере Y. Каждый конкретный производитель характеризуется некоторым множеством τ технологий, которое называется производственным множеством . Типичное заштрихованное множество представлено на рис. 2.1. Данный производитель затрачивает один товар для выпуска другого.

Рис. 2.1. Производственное множество

Производственное множество отражает широту возможностей производителя: чем оно больше, тем шире его возможности. Производственное множество должно удовлетворять следующим условиям:

    оно замкнуто – это означает, что если вектор Т затрат-выпуска сколь угодно точно приближается векторами из τ, то и Т принадлежит τ (если все точки вектора Т лежат в τ, то Тτ см. рис. 2.1 точки С и В);

    в τ(-τ) = {0}, т. е. если Tτ, T ≠ 0, то -Тτ – нельзя поменять местами затраты и выпуск, т. е. производство – необратимый процесс (множество – τ находится в четвертом квадранте, где у 0);

    множество выпукло, это предположение ведет к уменьшению отдачи от перерабатываемых ресурсов с ростом объемов производства (к увеличению норм расхода затрат на готовую продукцию). Так, из рис. 2.1 ясно, что y/x  убывает при х  -. В частности, предположение о выпуклости ведет к уменьшению производительности труда с ростом объема производства.

Часто выпуклости просто бывает недостаточно, и тогда требуют строгой выпуклости производственного множества (или некоторой его части).

2.2. “Кривая” производственных возможностей

и вмененные издержки

Рассматриваемое понятие производственного множества отличается высокой степенью абстрактности и в силу чрезвычайной общности малопригодно для экономической теории.

Рассмотрим, например рис. 2.1. Начнем с точек В и С. Затраты по этим технологиям одинаковы, а выпуск разный. Производитель, если он не лишен здравого смысла, никогда не выберет технологию В, раз есть более лучшая технология С. В данном случае (см. рис. 2.1), найдем для каждого x  0 самую высокую точку (x, y) в производственном множестве. Очевидно, при затратах х технология (x, y) самая лучшая. Никакая технология (x, b) c b производственной функцией. Точное определение производственной функции:

Y = f(x)(x, y) τ, и если (x, b)  τ и b  y, то b = x.

Из рис. 2.1 видно, что для всякого x  0 такая точка y = f(x) единственна, что, собственно, и позволяет говорить о производственной функции. Но так просто дело обстоит, если выпускается только один товар. В общем случае для вектора затрат Х обозначим множество М х = {Y:(X,Y)τ}. Множество М х – это множество всех возможных выпусков при затратах Х. В этом множестве рассмотрим “кривую” производственных возможностей K x = {YМ х: если ZМ х и Z  Y, то Z = X}, т. е. K x – это множество лучших выпусков, лучше которых нет . Если выпускаются два товара, то это кривая, если же выпускается более двух товаров, то это поверхность, тело или множество еще большей размерности.

Итак, для любого вектора затрат Х все наилучшие выпуски лежат на кривой (поверхности) производственных возможностей. Поэтому из экономических соображений оттуда и должен выбрать производитель технологию. Для случая выпуска двух товаров y 1 , y 2 картина показана на рис. 2.2.

Если оперировать только натуральными показателями (тоннами, метрами и т. д.), то для данного вектора затрат Х мы лишь должны выбрать вектор выпуска Y на кривой производственных возможностей, но какой конкретно выпуск надо выбрать, решить еще нельзя. Если само производственное множество τ выпукло, то и М х выпукло для любого вектора затрат Х. В дальнейшем нам понадобится строгая выпуклость множества М х. В случае выпуска двух товаров это означает, что касательная к кривой производственных возможностей K x имеет с этой кривой только одну общую точку.

Рис. 2.2. Кривая производственных возможностей

Рассмотрим теперь вопрос о так называемых вмененных издержках . Предположим, что выпуск фиксирован в точке A(y 1 , y 2), см. рис. 2.2. Теперь возникла необходимость увеличить выпуск 2-го товара на y 2 , используя, конечно, прежний набор затрат. Сделать это можно, как видно из рис. 2.2, перенеся технологию в точку В, для чего с увеличением выпуска второго товара на y 2 придется уменьшить выпуск первого товара на y 1 .

Вмененными издержками первого товара по отношению ко второму в точке А называется
. Если кривая производственных возможностей задана неявным уравнением F(y 1 ,y 2) = 0, то δ 1 2 (A) = (F/y 2)/(F/y 1), где частные производные взяты в точке А. Если внимательно вглядеться в рассматриваемый рисунок, то можно обнаружить любопытную закономерность: при движении слева вниз по кривой производственных возможностей вмененные издержки уменьшаются от очень больших величин до очень малых.

2.3. Производственные функции и их свойства

Производственной функцией называется аналитическое соотношение, связывающее переменные величины затрат (факторов, ресурсов) с величиной выпуска продукции. Исторически одними из первых работ по построению и использованию производственных функций были работы по анализу сельскохозяйственного производства в США. В 1909 г. Митчерлих предложил нелинейную производственную функцию: удобрения – урожайность. Независимо от него Спиллман предложил показательное уравнение урожайности. На их основе был построен ряд других агротехнических производственных функций.

Производственные функции предназначены для моделирования процесса производства некоторой хозяйственной единицы: отдельной фирмы, отрасли или всей экономики государства в целом. С помощью производственных функций решаются задачи:

    оценки отдачи ресурсов в производственном процессе;

    прогнозирования экономического роста;

    разработки вариантов плана развития производства;

    оптимизации функционирования хозяйственной единицы при условии заданного критерия и ограничений по ресурсам.

Общий вид производственной функции: Y = Y(X 1 , X 2 , …, X i , …, X n), где Y – показатель, характеризующий результаты производства; X – факторный показатель i-го производственного ресурса; n – количество факторных показателей.

Производственные функции определяются двумя группами предположений: математических и экономических. Математически предполагается, что производственная функция должна быть непрерывной и дважды дифференцируемой. Экономические предположения состоят в следующем: при отсутствии хотя бы одного производственного ресурса производство невозможно, т. е. Y(0, X 2 , …, X i , …, X n) =

Y(X 1 , 0, …, X i , …, X n) = …

Y(X 1 , X 2 , …, 0, …, X n) = …

Y(X 1 , X 2 , …, X i , …, 0) = 0.

Однако, только с помощью натуральных показателей определить для данных затрат Х единственный выпуск Y удовлетворительно не удается: наш выбор сузился лишь до «кривой» производственных возможностей K x . В силу этих причин разработана лишь теория производственных функций производителей, выпуск которых можно охарактеризовать одной величиной – либо объемом выпуска, если выпускается один товар, либо суммарной стоимостью всего выпуска.

Пространство затрат m-мерно. Каждой точке пространства затрат Х = (х 1 , …, х m) соответствует единственный максимальный выпуск (см. рис. 2.1), произведенный при использовании этих затрат. Эта связь и называется производственной функцией. Однако обычно производственную функцию понимают не столь ограничительно и всякую функциональную связь между затратами и выпуском считают производственной функцией. В дальнейшем будем считать, что производственная функция имеет необходимые производные. Предполагается, что производственная функция f(X) удовлетворяет двум аксиомам. Первая из них утверждает, что существует подмножество пространства затрат, называемое экономической областью Е, в которой увеличение любого вида затрат не приводит к уменьшению выпуска. Таким образом, если X 1 , X 2 – две точки этой области, то X 1  X 2 влечет f(X 1)  f(X 2). В дифференциальной форме это выражается в том, что в этой области все первые частные производные функции неотрицательны: f/x 1 ≥ 0 (у любой возрастающей функции производная больше нуля). Эти производные называются предельными продуктами , а вектор f/X = (f/x 1 , …, f/x m) – вектором предельных продуктов (показывает во сколько раз изменится выпуск продукции при изменении затрат).

Вторая аксиома утверждает, что существует выпуклое подмножество S экономической области, для которой подмножества {XS:f(X)  a} выпуклы для всех а  0. В этом подмножестве S матрица Гёссе, составленная из вторых производных функции f(X), отрицательно определена, следовательно,  2 f/x 2 i

Остановимся на экономическом содержании этих аксиом. Первая аксиома утверждает, что производственная функция не какая-то совершенно абстрактная функция, придуманная теоретиком-математиком. Она, пусть и не на всей своей области определения, а только лишь на ее части, отражает экономически важное, бесспорное и в то же время тривиальное утверждение: в разумной экономике увеличение затрат не может привести к уменьшению выпуска. Из второй аксиомы поясним только экономический смысл требования, чтобы производная  2 f/x 2 i была меньше нуля для каждого вида затрат. Это свойство называется в экономике за коном убывающей отдачи или убывающей доходности : по мере увеличения затрат, начиная с некоторого момента (при входе в область S!), на чинает уменьшаться предельный продукт. Классическим примером этого закона является добавление все большего и большего количества труда в производство зерна на фиксированном участке земли. В дальнейшем подразумевается, что производственная функция рассматривается на области S, в которой обе аксиомы справедливы.

Составить производственную функцию данного предприятия можно, даже ничего не зная о нем. Надо только поставить у ворот предприятия счетчик (человека или какое-то автоматическое устройство), который будет фиксировать Х – ввозимые ресурсы и Y – количество продукции, которую предприятие произвело. Если накопить достаточно много такой статической информации, учесть работу предприятия в различных режимах, то потом можно прогнозировать выпуск продукции, зная только объем ввезенных ресурсов, а это и есть знание производственной функции.

2.4. Производственная функция Кобба-Дугласа

Рассмотрим одну из наиболее распространенных производственных функций – функцию Кобба-Дугласа: Y = AK  L  , где A, ,  > 0 – константы,  + 

Y/K = AαK α -1 L β > 0, Y/L = AβK α L β -1 > 0.

Отрицательность вторых частных производных, т. е. убывание предельных продуктов: Y 2 /K 2 = Aα(α–1)K α -2 L β 0.

Перейдем к основным экономико-математическим характеристикам производственной функции Кобба-Дугласа. Средняя производительность труда определяется как y = Y/L – отношение объема произведенного продукта к количеству затраченного труда ; средняя фондоотдача k = Y/K – отношение объема произведенного продукта к величине фондов .

Для функции Кобба-Дугласа средняя производительность труда y = AK  L  , и в силу условия  с увеличением затрат труда средняя производительность труда падает. Этот вывод допускает естественное объяснение – поскольку величина второго фактора К остается неизменной, то, значит, вновь привлекаемая рабочая сила не обеспечивается дополнительными средствами производства, что и приводит к снижению производительности труда (это справедливо и в самом общем случае – на уровне производственных множеств).

Предельная производительность труда Y/L = AβK α L β -1 > 0, откуда видно, что для функции Кобба-Дугласа предельная производительность труда пропорциональна средней производительности и меньше ее. Аналогично определяются средняя и предельная фондоотдачи. Для них также справедливо указанное соотношение – предельная фондоотдача пропорциональна средней фондоотдаче и меньше ее.

Важное значение имеет такая характеристика, как фондовооруженность f = K/L, показывающая объем фондов, приходящийся на одного работника (на одну единицу труда) .

Найдем теперь эластичность продукции по труду:

(Y/L):(Y/L) = (Y/L)L/Y = AβK α L β -1 L/(AK α L β) = β.

Таким образом, ясен смысл параметра – это эластичность (отношение предельной производительности труда к средней производительности труда) продукции по труду . Эластичность продукции по труду означает, что для увеличения выпуска продукции на 1 % необходимо увеличить объем трудовых ресурсов на  %. Аналогичный смысл имеет параметр  – это эластичность продукции по фондам .

И еще одно значение представляется интересным. Пусть  +  = 1. Легко проверить, что Y = (Y/K)/K + (Y/L)L (подставляя уже вычисленные ранее Y/K, Y/L в эту формулу). Будем считать, что общество состоит только из рабочих и предпринимателей. Тогда доход Y распадается на две части – доход рабочих и доход предпринимателей. Поскольку при оптимальном размере фирмы величина Y/L – предельный продукт по труду – совпадает с заработной платой (это можно доказать), то (Y/L)L представляет собой доход рабочих. Аналогично величина Y/K есть предельная фондоотдача, экономический смысл которой есть норма прибыли, следовательно, (Y/K)K представляет доход предпринимателей.

Функция Кобба-Дугласа – наиболее известная среди всех производственных функций. На практике при ее построении иногда отказываются от некоторых требований (например, сумма  +  может быть больше 1 и т. п.).

Пример 1. Пусть производственная функция есть функция Кобба-Дугласа. Чтобы увеличить выпуск продукции на а = 3 %, надо увеличить основные фонды на b = 6 % или численность работников на c = 9 %. В настоящее время один работник за месяц производит продукции на М = 10 4 руб. , а всего работников L = 1000. Основные фонды оцениваются в K = 10 8 руб. Найти производственную функцию.

Решение. Найдем коэффициенты , :  = а/b = 3/6 = 1/2,  = а/с = = 3/9 = 1/3, следовательно, Y = AK 1/2 L 1/3 . Для нахождения А подставим в эту формулу значения K, L, M, имея в виду, что Y = ML = 1000 . 10 4 = 10 7 – – 10 7 = А(10 8) 1/2 1000 1/3 . Отсюда А = 100. Таким образом, производственная функция имеет вид: Y = 100K 1/2 L 1/3 .

2.5. Теория фирмы

В предыдущем разделе мы, анализируя, моделируя поведение производителя, использовали только натуральные показатели и обошлись без цен, однако не смогли окончательно решить задачу производителя, т. е. указать единственный способ действий для него в сложившихся условиях. Теперь введем в рассмотрение цены. Пусть Р – вектор цен. Если Т = (X,Y) – технология, т. е. вектор «затраты-выпуск», X – затраты, Y – выпуск, то скалярное произведение PT = PX + PY есть прибыль от использования технологии Т (затраты – отрицательные количества). Теперь сформулируем математическую формализацию аксиомы, описывающей поведение производителя.

Задача производителя: производитель выбирает технологию из своего производственного множества, стремясь максимизировать прибыль. Итак, производитель решает следующую задачу: РТ→max, Tτ. Эта аксиома резко упрощает ситуацию выбора. Так, если цены положительны, что естественно, то компонента «выпуск» решения этой задачи автоматически будет лежать на кривой производственных возможностей. Действительно, пусть T = (X,Y) – какое-нибудь решение задачи производителя. Тогда существует ZK x , Z  Y, следовательно, P(X, Z)  P(X, Y), значит, точка (X, Z) также есть решение задачи производителя.

Для случая двух видов продуктов задачу можно решить графически (рис. 2.3). Для этого надо «двигать» прямую линию, перпендикулярную вектору Р, в направлении, куда он показывает; тогда последняя точка, когда эта прямая линия еще пересекает производственное множество, и будет решением (на рис. 2.3. это точка Т). Как легко видеть, строгая выпуклость нужной части производственного множества во втором квадранте гарантирует единственность решения. Такие же рассуждения действуют и в общем случае, для большего числа видов затрат и выпуска. Однако мы не пойдем по этому пути, а используем аппарат производственных функций и производителя назовем фирмой. Итак, выпуск фирмы можно охарактеризовать одной величиной – либо объемом выпуска, если выпускается один товар, либо суммарной стоимостью всего выпуска. Пространство затрат m-мерно, вектор затрат Х = (х 1 , …, х m). Затраты однозначно определяют выпуск Y, а эта связь и есть производственная функция Y = f(X).

Рис. 2.3. Решение задачи производителя

В данной ситуации обозначим через Р вектор цен на товары-затраты и пусть v – цена единицы выпускаемого товара. Следовательно, прибыль W, являющаяся в итоге функцией Х (и цен, но они считаются постоянными), есть W(X) = vf(X) – PX→max, X  0. Приравнивая частные производные функции W к нулю, получим:

v(f/x j) = p j для j = 1, …, m или v(f/X) = P (2.1)

Будем предполагать, что все затраты строго положительны (нулевые можно просто исключить из рассмотрения). Тогда точка, даваемая соотношением (2.1), оказывается внутренней, т. е. точкой экстремума. И поскольку еще предполагается отрицательная определенность матрицы Гёссе производственной функции f(Х) (исходя из требований к производственным функциям), то это точка максимума.

Итак, при естественных предположениях на производственные функции (эти предположения выполняются для производителя со здравым смыслом и в разумной экономике) соотношение (2.1) дает решение задачи фирмы, т. е. определяет объем Х * перерабатываемых ресурсов, в результате чего получается выпуск Y * = f(Х *) Точку Х * , или (Х * ,f(Х *)) назовем оптимальным решением фирмы. Остановимся на экономическом смысле соотношения (2.1). Как говорилось, (f/X) = (f/x 1 ,…,f/x m) называется предельным вектором-продуктом, или вектором предельных продуктов , а f/x i называется i-м предельным продуктом , или откликом выпуска на изменение i-го товара затрат . Следовательно, vf/x i dx i – это стоимость i-го предельного продукта, дополнительно полученного из dx i единиц i-го ресурса . Однако стоимость dx i единиц i-го ресурса равна р i dx i , т. е. получилось равновесие: можно вовлечь в производство дополнительно dx i единиц i-го ресурса, потратив на его закупку р i dx i , но выигрыша не будет, т. к. получим после переработки продукции ровно на такую же сумму, сколько затратили. Соответственно, оптимальная точка, даваемая соотношением (2.1), является точкой равновесия – уже невозможно выжать из товаров-ресурсов больше, чем затрачено на их покупку.

Очевидно, наращивание выпуска фирмы происходило постепенно: сначала стоимость предельных продуктов была меньше покупной цены потребных для их производства товаров-ресурсов. Наращивание объемов производства идет до тех пор, пока не начнет выполняться соотношение (2.1): равенство стоимости предельных продуктов и покупной цены, потребных для их производства товаров-ресурсов.

Предположим, что в задаче фирмы W(X) = vf(X) – PX → max, X  0, решение Х * единственное для v > 0 и Р > 0. Таким образом, получается вектор-функция X * = X * (v, P), или функции x * I = x * i (v, p 1 , p m) для i = 1, …, m. Эти m функций называются функциями спроса на ресурсы при данных ценах на продукцию и ресурсы. Содержательно эти функции означают, что, если сложились цены Р на ресурсы и цена v на выпускаемый товар, данный производитель (характеризующийся данной производственной функцией) определяет объем перерабатываемых ресурсов по функциям x * I = x * i (v, p 1 , p m) и спрашивает эти объемы на рынке. Зная объемы перерабатываемых ресурсов и подставляя их в производственную функцию, получим выпуск как функцию цен; обозначим эту функцию через q * = q * (v,P) = f(X(v,P)) = Y * . Она называется функцией предложения продукции в зависимости от цены v на продукцию и цен Р на ресурсы.

По определению, ресурс i-го вида называется малоценным , если и только если, x * i /v т. е. при повышении цены на продукцию спрос на малоценный ресурс уменьшается. Удается доказать важное соотношение: q * /P = -X * /v или q * /p i = -x * i /v, для i = 1, …, m. Следовательно, возрастание цены продукции приводит к повышению (понижению) спроса на определенный вид ресурсов, если и только если увеличении платы за этот ресурс приводит к сокращению (возрастанию) оптимального выпуска. Отсюда видно основное свойство малоценных ресурсов: увеличение платы за них ведет к увеличению выпуска продукции! Однако можно строго доказать наличие таких ресурсов, возрастание платы за которые приводит к уменьшению выпуска продукции (т.е. все ресурсы не могут быть малоценными) .

Удается доказать также, что x * i /p i взаимодополняемыми, если x * i /p j взаимозаменяемыми, если x * i /p j > 0. То есть, для взаимодополняемых ресурсов повышение цены на один из них приводит к падению спроса на другой, а для взаимозаменяемых ресурсов повышение цены на один из них приводит к увеличению спроса на другой. Примеры взаимодополняемых ресурсов: компьютер и его составляющие, мебель и дерево, шампунь и кондиционер к нему. Примеры взаимозаменяемых ресурсов: сахар и заменители сахара (например, сорбит), арбузы и дыни, майонез и сметана, масло и маргарин и т. д.

Пример 2. Для фирмы с производственной функцией Y = 100K 1/2 L 1/3 (из примера 1) найти оптимальный размер, если период амортизации основных фондов N=12 месяцев, зарплата работника в месяц а = 1000 руб.

Решение. Оптимальный размер выпуска или объема производства находится из соотношения (2.1). В данном случае выпуск продукции измеряется в денежном выражении, так что v = 1. Стоимость месячного содержания одного рубля фондов 1/N, т. е. получаем систему уравнений

, решая которую находим ответ:
, L = 8 . 10 3 , K = 144 . 10 6 .

2.6. Задачи

1. Пусть производственная функция есть функция Кобба-Дугласа. Чтобы увеличить выпуск продукции на 1 %, надо увеличить основные фонды на b = 4 % или численность работников на c = 3 %. В настоящее время один работник за месяц производит продукции на М = 10 5 руб. , а всего работников L = 10 4 . Основные фонды оцениваются в K = 10 6 руб. Найдите производственную функцию, среднюю фондоотдачу, среднюю производительность труда, фондовооруженность.

2. Группа «челноков» в количестве Е решила объединиться с N продавцами. Прибыль от дня работы (выручка минус расходы, но не зарплата) выражается формулой Y = 600(EN) 1/3 . Зарплата «челнока» 120 руб. в день, продавца – 80 руб. в день. Найдите оптимальный состав группы из «челноков» и продавцов, т. е. сколько должно быть «челноков» и сколько продавцов.

3. Бизнесмен решил основать небольшое автотранспортное предприятие. Ознакомившись со статистикой, он увидел, что примерная зависимость ежедневной выручки от числа автомашин А и числа N выражается формулой Y = 900А 1/2 N 1/4 . Амортизационные и другие ежедневные расходы на одну машину равны 400 руб., ежедневная зарплата рабочего 100 руб. Найдите оптимальную численность рабочих и автомашин.

4. Бизнесмен задумал открыть пивной бар. Предположим, что зависимость выручки Y (за вычетом стоимости пива и закусок) от числа столиков М и числа официантов F выражается формулой Y = 200М 2/3 F 1/4 . Расходы на один столик составляют 50 руб., зарплата официанта – 100 руб. Найдите оптимальный размер бара, т. е. число официантов и столиков.

Формализующее множество всех технологически допустимых векторов чистых выпусков продукции.

Определение

Пусть в экономике имеется N благ. В процессе производства из них n благ расходуются. Обозначим вектор этих благ (затрат) x (размерность вектора n). Другие m=N-n благ выпускаются в процессе производства (размерность вектора - m). Обозначим вектор этих благ y. Тогда вектор z=(-x,y) (размерность - N) называется вектором чистых выпусков . Совокупность всех технологически допустимых векторов чистых выпусков и составляют технологическое множество . Фактически это некоторое подмножество пространства R^N.

Для читателей, испытывающих трудности с понятиями вектор, множество:

вектор - список благ, каждое благо описано своим количеством, набор чисел;

все блага, израсходованные в производстве записываются в начале вектора чистого выпуска z со знаком минус (-x), произведенные со знаком плюс (y);

все возможные для производства сочетания образуют технологическое множество (сочетаний выпуска).

Свойства

  • Непустота : технологическое множество не пусто. Непустота означает принципиальную возможность производства.
  • Допустимость бездеятельности : нулевой вектор принадлежит технологическому множеству. Это формальное свойство означает, что нулевой выпуск при нулевых затратах является допустимым.
  • Замкнутость : технологическое множество содержит свою границу и предел любой последовательности технологически допустимых векторов чистых выпусков тоже принадлежит технологическому множеству.
  • Свобода расходования : если данный вектор z принадлежит технологическому множеству, то ему принадлежит и любой вектор z"\leqslant z. Это означает, что формально тот же объем выпуска можно производить и большими затратами.
  • Отсутствие "рога изобилия" : из неотрицательных векторов чистого выпуска технологическому множеству принадлежит только нулевой вектор. Это означает, что для производства продукции в положительном количестве необходимы ненулевые затраты.
  • Необратимость : для любого допустимого вектора z, противоположный вектор -z не принадлежит технологическому множеству. То есть из выпущенной продукции невозможно произвести ресурсы в том же количестве, в котором они используются для производства этой продукции.
  • Аддитивность : сумма двух допустимых векторов также является допустимым вектором. То есть допускается комбинирование технологий.
  • Свойства, связанные с отдачей от масштаба производства:
    • Невозрастающая отдача от масштаба : для любого \lambda \in (0;1) \lambda z
    • Неубывающая отдача от масштаба : для любого \lambda >1 если z принадлежит технологическому множеству, то \lambda z также принадлежит технологическому множеству.
    • Постоянная отдача от масштаба : одновременное выполнение двух предыдущих свойств, то есть для любого положительного \lambda если z принадлежит технологическому множеству, то \lambda z также принадлежит технологическому множеству. Свойство постоянной отдачи означает, что технологическое множество является конусом.

8. Выпуклость : для любых двух допустимых векторов z_1, z_2 допустимыми являются также любые векторы \alpha z_1 +(1-\alpha)z_2, где 0 < \alpha \leqslant 1. Свойство выпуклости означает возможность "смешивать" технологии. Оно, в частности, выполнено, если технологическое множество обладает свойством аддитивности и невозрастающей отдачи от масштаба. Более того, в этому случае технологическое множество является выпуклым конусом.

Эффективная граница технологического множества

Допустимую технологию z называют эффективной , если не существует другой, отличной от неё, допустимой технологии z"\geqslant z. Множество эффективных технологий образуют эффективную границу технологического множества.

Если выполнено условие свободы расходования и замкнутости технологического множества, то невозможно бесконечно увеличивать производство одного блага без уменьшения выпуска других. В этом случае для любой допустимой технологии z есть эффективная технология z" \geqslant z. В таком случае, вместо всего технологического множества можно использовать только его эффективную границу. Обычно эффективную границу можно задать некоторой производственной функцией.

Производственная функция

Рассмотрим однопродуктовые технологии (-x,y), где y - вектор размерности m=1, а x - вектор затрат размерности n. Рассмотрим множество X, включающее в себя все возможные векторы затрат x, таких, что для каждого x существует y, такой что векторы чистых выпусков (-x,y) принадлежат к технологическому множеству.

Числовая функция f(x) на X называется производственной функцией , если для каждого данного вектора затрат x значение f(x) определяет максимальное значение допустимого выпуска y (такого, что вектор чистого выпуска (-x,y) принадлежит технологическому множеству).

Любая точка эффективной границы технологического множества представима в виде (-x,f(x)), а обратное верно в том случае, если f(x) является возрастающей функцией (в таком случае y=f(x) - уравнение эффективной границы). Если технологическое множество обладает свойством свободы расходования и допускает описание производственной функцией, то технологическое множество определяется на основе неравенства y \leqslant f(x).

Для того, чтобы технологическое множество можно было бы задавать с помощью производственной функции достаточно, чтобы для любого x множество F(x) допустимых выпусков при данных затратах x, являлось ограниченным и замкнутым. В частности, это условие выполнено, если для технологического множества выполнены свойства замкнутости, невозрастающей отдачи от масштаба и отсутствия рога изобилия.

Если технологическое множество выпукло, то производственная функция вогнута и непрерывна на внутренности множества X. Если выполнено условие свободы расходования, то f(x) является неубывающей функцией (в этом случае также из вогнутости функции следует выпуклость технологического множества). Наконец, если выполнены одновременно и условие отсутствия рога изобилия и допустимость бездеятельности, то f(0)=0.

Если производственная функция является дифференцируемой, то можно определить локальную эластичность масштаба следующими эквивалентными способами:

e(x)=\frac {d f(\lambda x)}{d \lambda} \cdot \frac {\lambda}{f(x)}|_{\lambda=1}=\frac {f"(x)x}{f(x)}

где f"(x) - вектор-градиент производственной функции.

Определив таким образом эластичность масштаба можно показать, что если технологическое множество обладает свойством постоянной отдачи от масштаба, то e(x)=1, если убывающей отдачи от масштаба, то e(x) \leqslant 1, если возрастающей отдачи, то e(x)\geqslant 1.

Задача производителя

Если задан вектор цен p, то произведение pz представляет собой прибыль производителя. Задача производителя сводится к поиску такого вектора z, чтобы при заданном векторе цен прибыль была максимальна. Множество цен благ, при которых эта задача имеет решение, обозначим P. Можно показать, что при непустом, замкнутом технологическом множестве с невозрастающей отдачей от масштаба задача производителя имеет решение на множестве цен P, дающих отрицательную прибыль на так называемых рецессивных направлениях (это векторы z технологического множества, для которых при любом неотрицательном \lambda векторы \lambda z также принадлежат технологическому множеству). В частности, если множество рецессивных направлений совпадает с R^N_-, то решение существует при любых положительных ценах.

Функция прибыли \pi(p) определяется как pz(p), где z(p) - решение задачи производителя при данных ценах (это так называемая функция предложения, возможно многозначная). Функция прибыли является положительно однородной (первой степени), то есть \pi(\lambda p)=\lambda \pi(p) и непрерывной на внутренности P. Если технологическое множество строго выпукло, то функция прибыли является к тому же непрерывно дифференцируемой. Если технологическое множество замкнуто, то функция прибыли выпукла на любом выпуклом подмножестве допустимых цен P.

Функция (отображение) предложения z(p) является положительно однородной нулевой степени. Если технологическое множество строго выпукло, то функция предложения является однозначной на P и непрерывной на внутренности P. Если функция предложения дважды дифференцируема, то матрица Якоби этой функции симметрична и неотрицательно определена.

Если технологическое множество представлено посредством производственной функции, то прибыль определяется как pf(x)-wx, где w - вектор цен на факторы производства, p в данном случае цена выпускаемой продукции. Тогда для любого внутреннего решения (то есть принадлежащего внутренности X) задачи производителя справедливо равенство предельного продукта каждого фактора его относительной цене, то есть в векторной форме f"(x)=w/p.

Если задана функция прибыли \pi(p), являющаяся дважды непрерывно дифференцируемой, выпуклой и положительно однородной (первой степени) функцией, то можно восстановить технологическое множество, как множество, содержащее при любом неотрицательном векторе цен p векторы чистых выпусков z, удовлетворяющих неравенству pz\leqslant \pi(p). Можно также показать, что если функция предложения является положительно однородной нулевой степени и матрица её первых производных непрерывна, симметрична и неотрицательно определена, то соответствующая функция прибыли удовлетворяет вышеуказанным требованиям (верно также и обратное утверждение).

См. также

Напишите отзыв о статье "Технологическое множество"

Литература

Отрывок, характеризующий Технологическое множество

Княгиня, улыбаясь, слушала.
– Ежели еще год Бонапарте останется на престоле Франции, – продолжал виконт начатый разговор, с видом человека не слушающего других, но в деле, лучше всех ему известном, следящего только за ходом своих мыслей, – то дела пойдут слишком далеко. Интригой, насилием, изгнаниями, казнями общество, я разумею хорошее общество, французское, навсегда будет уничтожено, и тогда…
Он пожал плечами и развел руками. Пьер хотел было сказать что то: разговор интересовал его, но Анна Павловна, караулившая его, перебила.
– Император Александр, – сказала она с грустью, сопутствовавшей всегда ее речам об императорской фамилии, – объявил, что он предоставит самим французам выбрать образ правления. И я думаю, нет сомнения, что вся нация, освободившись от узурпатора, бросится в руки законного короля, – сказала Анна Павловна, стараясь быть любезной с эмигрантом и роялистом.
– Это сомнительно, – сказал князь Андрей. – Monsieur le vicomte [Господин виконт] совершенно справедливо полагает, что дела зашли уже слишком далеко. Я думаю, что трудно будет возвратиться к старому.
– Сколько я слышал, – краснея, опять вмешался в разговор Пьер, – почти всё дворянство перешло уже на сторону Бонапарта.
– Это говорят бонапартисты, – сказал виконт, не глядя на Пьера. – Теперь трудно узнать общественное мнение Франции.
– Bonaparte l"a dit, [Это сказал Бонапарт,] – сказал князь Андрей с усмешкой.
(Видно было, что виконт ему не нравился, и что он, хотя и не смотрел на него, против него обращал свои речи.)
– «Je leur ai montre le chemin de la gloire» – сказал он после недолгого молчания, опять повторяя слова Наполеона: – «ils n"en ont pas voulu; je leur ai ouvert mes antichambres, ils se sont precipites en foule»… Je ne sais pas a quel point il a eu le droit de le dire. [Я показал им путь славы: они не хотели; я открыл им мои передние: они бросились толпой… Не знаю, до какой степени имел он право так говорить.]
– Aucun, [Никакого,] – возразил виконт. – После убийства герцога даже самые пристрастные люди перестали видеть в нем героя. Si meme ca a ete un heros pour certaines gens, – сказал виконт, обращаясь к Анне Павловне, – depuis l"assassinat du duc il y a un Marietyr de plus dans le ciel, un heros de moins sur la terre. [Если он и был героем для некоторых людей, то после убиения герцога одним мучеником стало больше на небесах и одним героем меньше на земле.]
Не успели еще Анна Павловна и другие улыбкой оценить этих слов виконта, как Пьер опять ворвался в разговор, и Анна Павловна, хотя и предчувствовавшая, что он скажет что нибудь неприличное, уже не могла остановить его.
– Казнь герцога Энгиенского, – сказал мсье Пьер, – была государственная необходимость; и я именно вижу величие души в том, что Наполеон не побоялся принять на себя одного ответственность в этом поступке.
– Dieul mon Dieu! [Боже! мой Боже!] – страшным шопотом проговорила Анна Павловна.
– Comment, M. Pierre, vous trouvez que l"assassinat est grandeur d"ame, [Как, мсье Пьер, вы видите в убийстве величие души,] – сказала маленькая княгиня, улыбаясь и придвигая к себе работу.
– Ah! Oh! – сказали разные голоса.
– Capital! [Превосходно!] – по английски сказал князь Ипполит и принялся бить себя ладонью по коленке.
Виконт только пожал плечами. Пьер торжественно посмотрел поверх очков на слушателей.
– Я потому так говорю, – продолжал он с отчаянностью, – что Бурбоны бежали от революции, предоставив народ анархии; а один Наполеон умел понять революцию, победить ее, и потому для общего блага он не мог остановиться перед жизнью одного человека.
– Не хотите ли перейти к тому столу? – сказала Анна Павловна.
Но Пьер, не отвечая, продолжал свою речь.
– Нет, – говорил он, все более и более одушевляясь, – Наполеон велик, потому что он стал выше революции, подавил ее злоупотребления, удержав всё хорошее – и равенство граждан, и свободу слова и печати – и только потому приобрел власть.
– Да, ежели бы он, взяв власть, не пользуясь ею для убийства, отдал бы ее законному королю, – сказал виконт, – тогда бы я назвал его великим человеком.
– Он бы не мог этого сделать. Народ отдал ему власть только затем, чтоб он избавил его от Бурбонов, и потому, что народ видел в нем великого человека. Революция была великое дело, – продолжал мсье Пьер, выказывая этим отчаянным и вызывающим вводным предложением свою великую молодость и желание всё полнее высказать.
– Революция и цареубийство великое дело?…После этого… да не хотите ли перейти к тому столу? – повторила Анна Павловна.
– Contrat social, [Общественный договор,] – с кроткой улыбкой сказал виконт.
– Я не говорю про цареубийство. Я говорю про идеи.
– Да, идеи грабежа, убийства и цареубийства, – опять перебил иронический голос.
– Это были крайности, разумеется, но не в них всё значение, а значение в правах человека, в эманципации от предрассудков, в равенстве граждан; и все эти идеи Наполеон удержал во всей их силе.
– Свобода и равенство, – презрительно сказал виконт, как будто решившийся, наконец, серьезно доказать этому юноше всю глупость его речей, – всё громкие слова, которые уже давно компрометировались. Кто же не любит свободы и равенства? Еще Спаситель наш проповедывал свободу и равенство. Разве после революции люди стали счастливее? Напротив. Mы хотели свободы, а Бонапарте уничтожил ее.
Князь Андрей с улыбкой посматривал то на Пьера, то на виконта, то на хозяйку. В первую минуту выходки Пьера Анна Павловна ужаснулась, несмотря на свою привычку к свету; но когда она увидела, что, несмотря на произнесенные Пьером святотатственные речи, виконт не выходил из себя, и когда она убедилась, что замять этих речей уже нельзя, она собралась с силами и, присоединившись к виконту, напала на оратора.
– Mais, mon cher m r Pierre, [Но, мой милый Пьер,] – сказала Анна Павловна, – как же вы объясняете великого человека, который мог казнить герцога, наконец, просто человека, без суда и без вины?
– Я бы спросил, – сказал виконт, – как monsieur объясняет 18 брюмера. Разве это не обман? C"est un escamotage, qui ne ressemble nullement a la maniere d"agir d"un grand homme. [Это шулерство, вовсе не похожее на образ действий великого человека.]
– А пленные в Африке, которых он убил? – сказала маленькая княгиня. – Это ужасно! – И она пожала плечами.
– C"est un roturier, vous aurez beau dire, [Это проходимец, что бы вы ни говорили,] – сказал князь Ипполит.
Мсье Пьер не знал, кому отвечать, оглянул всех и улыбнулся. Улыбка у него была не такая, какая у других людей, сливающаяся с неулыбкой. У него, напротив, когда приходила улыбка, то вдруг, мгновенно исчезало серьезное и даже несколько угрюмое лицо и являлось другое – детское, доброе, даже глуповатое и как бы просящее прощения.
Виконту, который видел его в первый раз, стало ясно, что этот якобинец совсем не так страшен, как его слова. Все замолчали.
– Как вы хотите, чтобы он всем отвечал вдруг? – сказал князь Андрей. – Притом надо в поступках государственного человека различать поступки частного лица, полководца или императора. Мне так кажется.
– Да, да, разумеется, – подхватил Пьер, обрадованный выступавшею ему подмогой.
– Нельзя не сознаться, – продолжал князь Андрей, – Наполеон как человек велик на Аркольском мосту, в госпитале в Яффе, где он чумным подает руку, но… но есть другие поступки, которые трудно оправдать.
Князь Андрей, видимо желавший смягчить неловкость речи Пьера, приподнялся, сбираясь ехать и подавая знак жене.

Вдруг князь Ипполит поднялся и, знаками рук останавливая всех и прося присесть, заговорил:
– Ah! aujourd"hui on m"a raconte une anecdote moscovite, charmante: il faut que je vous en regale. Vous m"excusez, vicomte, il faut que je raconte en russe. Autrement on ne sentira pas le sel de l"histoire. [Сегодня мне рассказали прелестный московский анекдот; надо вас им поподчивать. Извините, виконт, я буду рассказывать по русски, иначе пропадет вся соль анекдота.]
И князь Ипполит начал говорить по русски таким выговором, каким говорят французы, пробывшие с год в России. Все приостановились: так оживленно, настоятельно требовал князь Ипполит внимания к своей истории.
– В Moscou есть одна барыня, une dame. И она очень скупа. Ей нужно было иметь два valets de pied [лакея] за карета. И очень большой ростом. Это было ее вкусу. И она имела une femme de chambre [горничную], еще большой росту. Она сказала…
Тут князь Ипполит задумался, видимо с трудом соображая.
– Она сказала… да, она сказала: «девушка (a la femme de chambre), надень livree [ливрею] и поедем со мной, за карета, faire des visites». [делать визиты.]
Тут князь Ипполит фыркнул и захохотал гораздо прежде своих слушателей, что произвело невыгодное для рассказчика впечатление. Однако многие, и в том числе пожилая дама и Анна Павловна, улыбнулись.
– Она поехала. Незапно сделался сильный ветер. Девушка потеряла шляпа, и длинны волоса расчесались…
Тут он не мог уже более держаться и стал отрывисто смеяться и сквозь этот смех проговорил:
– И весь свет узнал…
Тем анекдот и кончился. Хотя и непонятно было, для чего он его рассказывает и для чего его надо было рассказать непременно по русски, однако Анна Павловна и другие оценили светскую любезность князя Ипполита, так приятно закончившего неприятную и нелюбезную выходку мсье Пьера. Разговор после анекдота рассыпался на мелкие, незначительные толки о будущем и прошедшем бале, спектакле, о том, когда и где кто увидится.